

Towards Understanding the Contribution of Waterbodies to the Methane Emissions of a Permafrost Landscape on a Regional Scale – A Case Study from the Mackenzie Delta, Canada

Katrin Kohnert¹, Bennet Juhls^{1,2}, Sina Muster³, Sofia Antonova^{3,4}, Andrei Serafimovich¹, Stefan Metzger^{5,6}, Jörg Hartmann⁷, Torsten Sachs¹ **Contact:** katrin.kohnert@gfz-potsdam.de

B41I-2088

1. GFZ German Research Centre for Geosciences, Potsdam, Germany; 2. Now at: Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany, 3. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany; 4. GIScience, Department of Geography, Heidelberg, Germany; 5. National Ecological Observatory Network, Battelle, Boulder, CO 80301, USA; 6. University of Wisconsin-Madison, Dept. of Atmospheric and Oceanic Sciences, USA; 7. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany

1. Motivation and Objectives

Waterbodies in the arctic permafrost region are considered a strong source of the greenhouse gas methane (CH_4). However, we do not sufficiently understand their contribution to the circum-arctic CH₄ budget, due to the spatio-temporal variability of the fluxes and methodological constraints. We aim at advancing our understanding by addressing these research questions:

- 1. Are there relations between waterbody types and CH₄ flux that exist independently from the spatial resolution of the CH_4 measurements and from the study area?
- 2. Are CH₄ emissions larger in areas with a large number of shallow or small waterbodies?
- 3. Are CH₄ emissions from waterbodies exceeding those from the surrounding land surface?

Fig. 1: Study areas in the Mackenzie Delta and flight campaign setup

- Two study areas of 1000 km² each in the Mackenzie Delta (1a,b)
- Aircraft campaign AIRMETH (Airborne Measurements of Methane Fluxes, 1c)
- 12 flight days in July 2012 and 2013

Acknowledgements: Funding through grants of the Helmholtz Association to T.S. and S. Muster (VH-NG-821 and VH-NG 203) to S. Metzger. The AIRMETH campaigns were mainly funded by Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research www.gfz-potsdam.de References: Kohnert et al., 2017, Scientific Reports, 7:5828; Mauder et al., 2008, Boundary-Layer Meteorology, 129:431-450; Metzger et al., 2013, Biogeosciences, 10:2193-2217; Muster et al., 2017, Earth System Science Data, 9:317-348.

Relative change $(x, x_{original}) =$ $x - x_{original}$ xoriginal We coarsened the CH_4 flux Relative change map to cut less waterbodies < -1
-1 - -0.5
-0.5 - 0
-0.1 - 0
0 - 0.1
0.1 - 0.5
0.5 - 1
> 1 into fragments. We couldn't detect the "best" resolution for detecting 5 0 5 10 15 20 km relationships between CH₄ Fig. 8: (a) Stepwise coarsened CH_{4} flux map of the northern study and waterbodies. area and (b) relative changes between original CH_4 flux map and the resampled maps. > 98% of pixel: land > 98% of pixel: water n = 31625 n = 2613 Fig. 9: Correlations between waterbody types and CH_4 fluxes at different Fig. 10: CH_{4} fluxes in cells with spatial resolutions (numbers on y-axis) in the (a) northern and (b) mainly water and mainly land (at southern study area. Crossed cells: correlations not significant. 100 m x 100 m resolution) 4.1 All correlations between waterbody types and CH_4 flux were small. We did not find correlations that existed independently of study area or spatial resolution. 4.2 Unlike in the southern study area, in the northern study area, a higher number of shallow or small waterbodies was slightly positively correlated with the CH_4 flux. 4.3 CH₄ fluxes from water surface were not significantly larger than from land surface. A higher surface coverage with water was not correlated with higher CH₄ fluxes. Potentially too coarse resolution of CH₄ fluxes to detect a significant influence of waterbody emissions on regional scale Even if permafrost waterbodies seem to be strong emitters on an individual basis, they do not necessarily translate into significant CH_4 emission hot spots on a regional scale **5.** Conclusions Airborne CH₄ flux measurements too coarse to assign flux to single waterbodies Technical developments in drones might enable regional coverage at high resolution and to detect regional flux patterns from waterbodies

ne@n

4. Results and Discussion

HELMHOLTZ